복습하기 위해 학부 수업 내용을 필기한 내용입니다. 이해를 제대로 하지 못하고 정리한 경우 틀린 내용이 있을 수 있습니다. 그러한 부분에 대해서는 알려주시면 정말 감사하겠습니다. ▶4.7 다층 퍼셉트론 퍼셉트론은 선형이라는 한계 - 선형 분리 불가능한 데이터에서는 높은 오류율을 가진다. 4.7.1 특징 공간 변환 퍼셉트론 두 개로 특징 공간을 세 개의 부분 공간으로 나눌 수 있다. 두 퍼셉트론을 병렬로 결합하면 (x1, x2) 공간을 (z1, z2) 공간으로 변환할 수 있다. 새로운 공간 (z1, z2)의 흥미로운 특성 - 선형 분리 불가능하던 네 점이 선형 분리가 가능해진다. - 퍼셉트론을 하나 더 쓰면 XOR 문제를 푸는 신경망이 완성된다. 신경망을 공간 변환기로 볼 수 있다. - 원래 특징 공간을 ..